デュラチャ大学数学 のバックアップ差分(No.24)

  • 追加された行はこの色です。
  • 削除された行はこの色です。
[[移転しました>https://drrrkari.swiki.jp/index.php?%E3%83%87%E3%83%A5%E3%83%A9%E3%83%81%E3%83%A3%E5%A4%A7%E5%AD%A6%E6%95%B0%E5%AD%A6#q84a08bc]]
*数列の極限 [#m8dccea7]
&br;
数列の極限に入る前に、準備として
εを使った論理の練習から始めよう。
なお、この単元では特に断りがない限り
α,βは実数として扱うことにする。
&br;
【例題1】 次の命題が真であることを示せ。(∀a,b∈R)
(1) ∀ε>0(a≦b+ε) ⇔ a≦b
(2) ∀ε>0(a<b+ε) ⇔ a≦b
(3) ∀ε≧0(a≦b+ε) ⇔ a≦b
(4) ∀ε≧0(a<b+ε) ⇔ a<b
(5) ∀ε>0(|a-b|<ε) ⇔ a=b
(6) ∀ε>0(|a-b|≦ε) ⇔ a=b
 (Pf) (1) →の証明:a>bと仮定すると
 a>b+εとなるε>0が存在し、矛盾する。
 ←の証明:a≦b ⇒ a≦b≦b+ε(∀ε>0)
 (2) →の証明:a>bと仮定すると
 a>b+εとなるε>0が存在し、矛盾する。
 ←の証明:a≦b ⇒ a≦b<b+ε(∀ε>0)
 (3) →の証明:a>bと仮定すると
 a>b+εとなるε≧0が存在し、矛盾する。
 ←の証明:a≦b ⇒ a≦b≦b+ε(∀ε≧0)
 (4) →の証明:a≧bと仮定すると
 a≧b+εとなるε≧0が存在し、矛盾する。
 ←の証明:a<b ⇒ a<b≦b+ε(∀ε≧0)
 (5) →の証明:a≠bと仮定すると
 |a-b|>εとなるε>0が存在し、矛盾する。
 ←の証明:a=b ⇒ |a-b|=0<ε(∀ε>0)
 (6) →の証明:a≠bと仮定すると
 |a-b|>εとなるε>0が存在し、矛盾する。
 ←の証明:a=b ⇒ |a-b|=0≦ε(∀ε>0)
&br;
(A) 数列の極限の定義 (ε-N論法)
{a[n]}を数列、α∈Rとする。
&color(red){lim[n→∞]a[n]=α};
&color(red){⇔ ∀ε>0 , ∃N(ε)∈N , ∀n≧N(ε) , |a[n]-α|<ε};
lim[n→∞]a[n]=αが成り立つとき、{a[n]}は
αに収束するといい、αを{a[n]}の極限値という。
&br;
【例題2】 次の命題(1)~(4)は同値であることを示せ。
(1) ∀ε1>0 , ∃N1(ε1)∈N , ∀n≧N1(ε1) , |a[n]-α|<ε1
(2) ∀ε2>0 , ∃N2(ε2)∈N , ∀n>N2(ε2) , |a[n]-α|<ε2
(3) ∀ε3>0 , ∃N3(ε3)∈N , ∀n≧N3(ε3) , |a[n]-α|≦ε3
(4) ∀ε4>0 , ∃N4(ε4)∈N , ∀n≧N4(ε4) , |a[n]-α|<2ε4
 (Pf) (1)⇒(2):(1)を仮定し、∀ε2>0をとる。
 N2(ε2)=N1(ε2) , n>N2(ε2) ⇒ n>N1(ε2)
 ⇒ n≧N1(ε2) ⇒ |a[n]-α|<ε2 。
 (2)⇒(1):(2)を仮定し、∀ε1>0をとる。
 N1(ε1)=N2(ε1)+1 , n≧N1(ε1)
 ⇒ n≧N2(ε1)+1 ⇒ n>N2(ε1) ⇒ |a[n]-α|<ε1
 (1)⇒(3):(1)を仮定し、∀ε3>0をとる。
 N3(ε3)=N1(ε3) , n≧N3(ε3) ⇒ n≧N1(ε3)
 ⇒ |a[n]-α|<ε3 ⇒ |a[n]-α|≦ε3
 (3)⇒(1):(3)を仮定し、∀ε1>0をとる。
 N1(ε1)=N3((ε1)/2) , n≧N1(ε1) ⇒ n≧N3((ε1)/2)
 ⇒ |a[n]-α|≦(ε1)/2 ⇒ |a[n]-α|<ε1
 (1)⇒(4):(1)を仮定し、∀ε4>0をとる。
 N4(ε4)=N1(ε4) , n≧N4(ε4) ⇒ n≧N1(ε4)
 ⇒ |a[n]-α|<ε4 ⇒ |a[n]-α|<2ε4
 (4)⇒(1):(4)を仮定し、∀ε1>0をとる。
 N1(ε1)=N4((ε1)/2) , n≧N1(ε1) ⇒ n≧N4((ε1)/2)
 ⇒ |a[n]-α|<2・{(ε1)/2}=ε1
※2ε4の2は任意の正数に置き換え可能。
&br;
【例題3】 lim[n→∞](1/n)=0を示せ。
 (Pf) アルキメデスの原理より
 ∀ε>0 , ∃N(ε)∈N s.t. 1/ε<N(ε) , 
 ∀n≧N(ε) , |(1/n)-0|
 =|1/n|=1/n≦1/N(ε)<ε 。
&br;
【例題4】 lim[n→∞](3n-2)/(2n+1)=3/2を示せ。
 (Pf) |{(3n-2)/(2n+1)} - (3/2)|
 =|{2(3n-2)-3(2n+1)}/{2(2n+1)}|
 =7/{2(2n+1)}<4/n
 アルキメデスの原理より
 ∀ε>0 , ∃N(ε)∈N s.t. 4/ε<N(ε) , 
 ∀n≧N(ε) , |{(3n-2)/(2n+1)} - (3/2)|
 <4/n≦4/{N(ε)}<ε 。
&br;
【例題5】 lim[n→∞](ⁿ√n)=1を示せ。
 (Pf) ⁿ√n<1と仮定する。ⁿ√n>0より
 両辺をn乗してn<1。これはn≧1に反する。
 よって、ⁿ√n≧1なのでⁿ√n=1+xとおくとx≧0 。
 n=(1+x)^n≧1+nx+({n(n-1)}/2)x²>({n(n-1)}/2)x²
 |ⁿ√n-1|²=x²<2/(n-1)
 ∴∀ε>0 , ∃N(ε)∈N s.t.
 2/{N(ε)-1}<ε² , ∀n≧N(ε) , 
 |ⁿ√n-1|<√{2/(n-1)}
 ≦√(2/{N(ε)-1})<ε
※√a+bとは(√a)+bのことである。
&br;
【例題6】 lim[n→∞]a[n]=α , 
b[n]=(1/n)Σ[k=1→n]a[k]
⇒ lim[n→∞]b[n]=α を示せ。
 (Pf) ∀ε>0 , ∃N1(ε),N2(ε)∈N
 s.t. (n>N1(ε) ⇒ |a[n]-α|<ε)∧
 ((1/ε)Σ[k=1→N1(ε)]|a[k]-α|<N2(ε)) , 
 ∀n>max{N1(ε),N2(ε)} , 
 |b[n]-α|=|(1/n)Σ[k=1→n]a[k]-α|
 =|(1/n)Σ[k=1→n](a[k]-α)|
 ≦(1/n)Σ[k=1→n]|a[k]-α|
 =(1/n)Σ[k=1→N1(ε)]|a[k]-α|+
 (1/n)Σ[k=N1(ε)+1→n]|a[k]-α|
 <(1/n)Σ[k=1→N1(ε)]|a[k]-α|+
 ({(n-N(ε)}/n)・ε<ε+ε=2ε
&br;
極限の一意性:
&color(red){lim[n→∞]a[n]=α ,}; 
&color(red){lim[n→∞]a[n]=β ⇒ α=β};
 (Pf)  (∀ε>0 , ∃N1(ε)∈N , 
 ∀n≧N1(ε) , |a[n]-α|<ε)∧
 (∀ε>0 , ∃N2(ε)∈N , 
 ∀n≧N2(ε) , |a[n]-β|<ε)より
 ∀ε>0 , ∃max{N1(ε),N2(ε)}∈N , 
 ∀n≧max{N1(ε),N2(ε)} , 
 |α-β|≦|α-a[n]|+|a[n]-β|<ε+ε=2ε 。
 ∴α=β
&br;
&color(red){数列{a[n]}は上に有界};
&color(red){⇔ ∃α∈R s.t. ∀n∈N , a[n]≦α};
#br
&color(red){数列{a[n]}は下に有界};
&color(red){⇔ ∃β∈R s.t. ∀n∈N , β≦a[n]};
#br
&color(red){数列{a[n]}は有界};
&color(red){⇔ ∃K>0 s.t. ∀n∈N , |a[n]|≦K};
&br;
(Thm1) &color(red){収束する数列は有界である。};
 (Pf) lim[n→∞]a[n]=αとすると
 ∀ε>0 , ∃N(ε)∈N , ∀n>N(ε) , |a[n]-α|<ε
 であるから、ε=1をとると
 ∃N(1)∈N , ∀n>N(1) , |a[n]-α|<1 。
 このとき、|a[n]|=|(a[n]-α)+α|<1+|α|より
 K=max{|a[1]| , ...
 ... , |a[N(1)]| , 1+|α|}とおくと
 ∀n∈K , |a[n]|≦K 。よって、{a[n]}は有界。
※証明の都合上、∀n≧N(ε)にはしなかった。
&br;
(Thm2) &color(red){(∀n∈N , a[n]≦(<)b[n])∧}; 
&color(red){(lim[n→∞]a[n]=α , lim[n→∞]b[n]=β) ⇒ α≦β};
 (Pf) (∀ε>0 , ∃N1(ε)∈N , 
 ∀n≧N1(ε) , |a[n]-α|<ε)∧
 (∀ε>0 , ∃N2(ε)∈N , 
 ∀n≧N2(ε) , |a[n]-β|<ε)より
 ∀ε>0 , ∃max{N1(ε),N2(ε)}∈N , 
 ∀n≧max{N1(ε),N2(ε)} , 
 α-ε<a[n]≦(<)b[n]<β+ε 。
 ∴α≦β (∵∀ε>0 , α-β<2ε)
&br;
&color(red){lim[n→∞]a[n]=∞};
&color(red){⇔ ∀K>0 , ∃N(K)∈N , ∀n≧N(K) , a[n]>K};
#br
&color(red){lim[n→∞]a[n]=-∞};
&color(red){⇔ ∀K>0 , ∃N(K)∈N , ∀n≧N(K) , a[n]<-K};
#br
このとき、数列{a[n]}は∞又は-∞に発散するという。
&br;
【例題7】 数列{a[n]}が∞に発散するとき、
{a[n]}は収束しないことを示せ。
 (Pf) ∀K>0 , ∃N(K)∈N , ∀n>N(K) , a[n]>K
 ⇒ (L=min{a[1] , ...
 ... , a[N(K)] , K} ⇒ ∀n∈N , a[n]≧L)
 ⇒ {a[n]}は下に有界
 ⇒ {a[n]}は有界ではない
 ⇒ {a[n]}は収束しない
&br;
【例題8】 数列{a[n]}が-∞に発散するとき、
{a[n]}は収束しないことを示せ。
 (Pf) ∀K>0 , ∃N(K)∈N , ∀n>N(K) , a[n]<-K
 ⇒ (L=max{a[1] , ...
 ... , a[N(K)] , -K} ⇒ ∀n∈N , a[n]≦L)
 ⇒ {a[n]}は上に有界
 ⇒ {a[n]}は有界ではない
 ⇒ {a[n]}は収束しない
&br;
例題7,8のように収束しない数列は発散するという。
発散する数列はこの他に振動する数列がある。
&br;
数列の極限の性質:
lim[n→∞]a[n]=α , lim[n→∞]b[n]=βのとき
&color(red){(i) lim[n→∞](a[n]±b[n])=α±β};
&color(red){(ii) lim[n→∞](ca[n])=cα (cは定数)};
&color(red){(iii) lim[n→∞](a[n]b[n])=αβ};
&color(red){(iv) lim[n→∞](b[n]/a[n])=β/α (α≠0)};
(v) {a[n]}の有限個の項を変えたり、取り除いたり、
{a[n]}に有限個の項を加えたりしても新たな数列
において収束する値、発散の状態は不変。
 (Pf) (i) (∀ε>0 , ∃N1(ε)∈N , ∀n≧N1(ε) , 
 |a[n]-α|<ε)∧(∀ε>0 , ∃N2(ε)∈N , ∀n≧N2(ε) , 
 |a[n]-β|<ε)より、∀ε>0 , ∃max{N1(ε),N2(ε)}∈N , 
 ∀n≧max{N1(ε),N2(ε)} , |a[n]±b[n]-(α±β)|
 =|(a[n]-α)±(b[n]-β)|≦|a[n]-α|+|b[n]-β|<2ε 。
 (ii) c=0のとき ∀ε>0 , ∀n∈N , |ca[n]-cα|=0<ε 。
 c≠0のとき ∀ε>0 , ∃N(ε)∈N , ∀n≧N(ε) , |
 a[n]-α|<εより、∀ε>0 , ∃N(ε)∈N , ∀n≧N(ε) , 
 |ca[n]-cα|=|c(a[n]-α)|≦|c||a[n]-α|<|c|ε 。
 (iii) 収束列は有界なので、∃K>0(∀n∈N(|b[n]|<K)) 。
 そこで、(∀ε>0 , ∃N1(ε)∈N , ∀n≧N1(ε) , 
 |a[n]-α|<ε)∧(∀ε>0 , ∃N2(ε)∈N , 
 ∀n≧N2(ε) , |b[n]-β|<ε)より、∀ε>0 , 
 ∃max{N1(ε/(2K)),N2(ε/(2|α|))}∈N , 
 ∀n≧max{N1(ε/(2K)),N2(ε/(2|α|))} , 
 |a[n]b[n]-αβ|=|(a[n]-α)b[n]+α(b[n]-β)|
 ≦|a[n]-α||b[n]|+|α||b[n]-β|
 <{ε/(2K)}・K+|α|・{ε/(2|α|)}=ε 。
 (iv) lim[n→∞]{1/(a[n])}=1/αを示せば良い。
 ∀ε>0 , ∃N(ε)∈N , ∀n≧N(ε) , |a[n]-α|<εより
 このときε=|α|/2>0をとると、|a[n]-α|<|α|/2であり
 |a[n]|=|α-(α-a[n])|≧|α|-|α-a[n]|>|α|/2なので
 ∀ε>0 , ∃max(N(|α|/2),N((|α|/2)・|α|・ε))∈N , 
 ∀n≧max(N(|α|/2) , N((|α|/2)・|α|・ε)) , 
 |(1/a[n])-(1/α)|=|α-a[n]|/(|a[n]||α|)
 <{(|α|/2)・|α|・ε}/(|α|/2・|α|)=ε 。
 (v) {a[n]}の有限個の項を変えることは{a[n]}の
 有限個の項を取り除き、有限個の項を加えることに
 等しいので、取り除く場合と加える場合について考える。
 <1> {a[n]}から有限個の項を取り除くとき
 {a[n]}からk個(∀k∈N)の項a[n(1)],・・・,a[n(k)]を
 取り除いた数列を{b[n]}とおく。(n(1)<n(2)<・・・)
 [1] lim[n→∞]a[n]=αの場合
 lim[n→∞]a[n]=α
 ⇔ ∀ε>0 , ∃N(ε)∈N , ∀n≧N(ε) , |a[n]-α|<ε
 (1) N(ε)>n(k)のとき。
 a[N(ε)]=b[N(ε)-k]より、N(ε)-k=N1(ε)とおくと
 ∀ε>0 , ∃N1(ε)∈N ,∀n≧N1(ε) , |b[n]-α|<ε 。
 (2) N(ε)≦n(k)のとき
 a[n(k)+1]=b[n(k)+1-k]より
 n(k)+1-k=N2(n(k))とおくと
 ∀ε>0 , ∃N2(n(k))∈N ,
 ∀n≧N2(n(k)) , |b[n]-α|<ε 。
 (1),(2)より、lim[n→∞]b[n]=α 。
 [2] lim[n→∞]a[n]=∞の場合
 lim[n→∞]a[n]=∞
 ⇔ ∀K>0 , ∃N(K)∈N , ∀n≧N(K) , a[n]>K
 (3) N(K)>n(k)のとき
 a[N(K)]=b[N(K)-k]より、N(K)-k=N3(K)とおくと
 ∀K>0 , ∃N3(K)∈N , ∀n≧N3(K) , b[n]>K 。
 (4) N(ε)≦n(k)のとき
 a[n(k)+1]=b[n(k)+1-k]より
 n(k)+1-k=N4(n(k))とおくと、∀K>0 ,
 ∃N4(n(k))∈N , ∀n≧N4(n(k)) , b[n]>K 。
 (3),(4)より、lim[n→∞]b[n]=∞ 。
 [3] lim[n→∞]a[n]=-∞の場合
 lim[n→∞]a[n]=-∞
 ⇔ ∀K>0 , ∃N(K)∈N , ∀n≧N(K) , a[n]<-K
 (5) N(K)>n(k)のとき
 a[N(K)]=b[N(K)-k]より、N(K)-k=N5(K)とおくと
 ∀K>0 , ∃N5(K)∈N , ∀n≧N5(K) , b[n]<-K 。
 (6) N(ε)≦n(k)のとき
 a[n(k)+1]=b[n(k)+1-k]より
 n(k)+1-k=N6(n(k))とおくと
 ∀K>0 , ∃N6(n(k))∈N ,
 ∀n≧N6(n(k)) , b[n]<-K 。
 (5),(6)より、lim[n→∞]b[n]=-∞ 。
 <2> {a[n]}に有限個の項を加えるとき
 {a[n]}にk個の数列{c[n]}(1≦n≦k)を
 付け加えて得られる数列を{b[n]}とおく。
 ただし、c[m1](1≦m1≦k)が{b[n]}の第A項、
 c[m2](m1<m2≦k)が{b[n]}の第B項のとき
 A<Bであるとする。すなわち、c[1]~c[k]のうち
 c[k]が{b[n]}において最も後ろにある項である。
 [4] lim[n→∞]a[n]=αの場合
 lim[n→∞]a[n]=α
 ⇔ ∀ε>0 , ∃N(ε)∈N , ∀n≧N(ε) , |a[n]-α|<ε
 (7) {a[n]}の第N(ε)項より前に項c[k]を加えるとき
 a[N(ε)]=b[N(ε)+k]より、N(ε)+k=N7(ε)とおくと
 ∀ε>0 , ∃N7(ε)∈N ,∀n≧N7(ε) , |b[n]-α|<ε 。
 (8) {a[n]}の第N(ε)項より後に項c[k]を加えるとき
 項c[k]は{a[n]}のある第N0(ε)項よりは前に加えられる。
 (このとき、N0(ε)>N(ε)は明らかである。)
 a[N0(ε)]=b[N0(ε)+k]より、N0(ε)+k=N8(ε)とおくと
 ∀ε>0 , ∃N8(ε)∈N ,∀n≧N8(ε) , |b[n]-α|<ε 。
 (7),(8)より、lim[n→∞]b[n]=α 。
 [5] lim[n→∞]a[n]=∞の場合
 lim[n→∞]a[n]=∞
 ⇔ ∀K>0 , ∃N(K)∈N , ∀n≧N(K) , a[n]>K
 (9) {a[n]}の第N(K)項より前に項c[k]を加えるとき
 a[N(K)]=b[N(K)+k]より、N(K)+k=N9(K)とおくと
 ∀ε>0 , ∃N9(K)∈N ,∀n≧N9(K) , |b[n]-α|<ε 。
 (10) {a[n]}の第N(K)項より後に項c[k]を加えるとき
 項c[k]は{a[n]}のある第N0(K)項よりは前に加えられる。
 (このとき、N0(K)>N(K)は明らかである。)
 a[N0(K)]=b[N0(K)+k]より、N0(K)+k=N10(K)とおくと
 ∀K>0 , ∃N10(K)∈N , ∀n≧N10(K) , a[n]>K 。
 (9),(10)より、lim[n→∞]b[n]=∞ 。
 [5] lim[n→∞]a[n]=∞の場合
 lim[n→∞]a[n]=∞
 ⇔ ∀K>0 , ∃N(K)∈N , ∀n≧N(K) , a[n]>K
 (9) {a[n]}の第N(K)項より前に項c[k]を加えるとき
 a[N(K)]=b[N(K)+k]より、N(K)+k=N9(K)とおくと
 ∀ε>0 , ∃N9(K)∈N ,∀n≧N9(K) , b[n]>K 。
 (10) {a[n]}の第N(K)項より後に項c[k]を加えるとき
 項c[k]は{a[n]}のある第N0(K)項よりは前に加えられる。
 (このとき、N0(K)>N(K)は明らかである。)
 a[N0(K)]=b[N0(K)+k]より、N0(K)+k=N10(K)とおくと
 ∀K>0 , ∃N10(K)∈N , ∀n≧N10(K) , b[n]>K 。
 (9),(10)より、lim[n→∞]b[n]=∞ 。
 [6] lim[n→∞]a[n]=-∞の場合
 lim[n→∞]a[n]=-∞
 ⇔ ∀K>0 , ∃N(K)∈N , ∀n≧N(K) , a[n]<-K
 (11) {a[n]}の第N(K)項より前に項c[k]を加えるとき
 a[N(K)]=b[N(K)+k]より、N(K)+k=N11(K)とおくと
 ∀ε>0 , ∃N11(K)∈N ,∀n≧N11(K) , b[n]<-K 。
 (12) {a[n]}の第N(K)項より後に項c[k]を加えるとき
 項c[k]は{a[n]}のある第N0(K)項よりは前に加えられる。
 (このとき、N0(K)>N(K)は明らかである。)
 a[N0(K)]=b[N0(K)+k]より、N0(K)+k=N12(K)とおくと
 ∀K>0 , ∃N12(K)∈N , ∀n≧N12(K) , b[n]<-K 。
 (11),(12)より、lim[n→∞]b[n]=-∞ 。
 <1>,<2>より、(v)は示された。
 (振動に関しても背理法より直ちに一致する。)
&br;
はさみうちの原理:
&color(red){(∀n∈N , a[n]≦b[n]≦c[n])∧};
&color(red){(lim[n→∞]a[n]=α)∧(lim[n→∞]c[n]=α)};
&color(red){⇒ lim[n→∞]b[n]=α};
 (Pf) (∀ε>0 , ∃N1(ε)∈N , ∀n≧N1(ε) , 
 |a[n]-α|<ε)∧(∀ε>0 , ∃N2(ε)∈N , 
 ∀n≧N2(ε) , |c[n]-α|<ε)より
 ∀ε>0 , ∃max{N1(ε),N2(ε)}∈N ,
 ∀n≧max{N1(ε),N2(ε)} ,
 α-ε<a[n]≦b[n]≦c[n]<α+ε 。
 ∴∀ε>0 , ∃max{N1(ε),N2(ε)}∈N , 
 ∀n≧max{N1(ε),N2(ε)} , |b[n]-α|<ε 。
&br;
(Thm3) (∀n∈N , a[n]≦b[n])∧
(lim[n→∞]a[n]=∞) ⇒ lim[n→∞]b[n]=∞
 (Pf) 仮定より、∀K>0 , ∃N(K)∈N ,
 ∀n≧N(K) , b[n]≧a[n]>K 。
&br;
(Thm4) (∀n∈N , a[n]≦b[n])∧
(lim[n→∞]b[n]=-∞) ⇒ lim[n→∞]a[n]=-∞
 (Pf) 仮定より、∀K>0 , ∃N(K)∈N ,
 ∀n≧N(K) , a[n]≦b[n]<-K 。
&br;
&color(red){{a[n]}は(単調)増加列 ⇔ ∀n∈N , a[n]≦a[n+1]}; 
&color(red){{a[n]}は(単調)減少列 ⇔ ∀n∈N , a[n]≧a[n+1]};
&color(red){{a[n]}は単調数列 ⇔ {a[n]}は増加列または減少列};
&br;
(Thm5) ∀α∈Rに収束する増加列{r[n]}が存在する。
 (Pf) ∀n∈N , ∃r[n]∈Q s.t. 
 α-(1/n)<r[n]<α-{1/(n+1)} 。
 このとき、r[n]<α-{1/(n+1)}<r[n+1]より
 {r[n]}は増加列であり、α-(1/n)→α ,
 α-{1/(n+1)}→α 。 ∴r[n]→α 。
※r[n]→αとはlim[n→∞]r[n]=αのことである。
&br;
(Thm6) &color(red){上に有界な増加列は収束する。};
 (Pf) {a[n]}を上に有界な増加列とすると
 α=sup{a[n]}が存在する。このとき、∀ε>0 ,
 ∃N(ε)∈N s.t. α-ε<a[N(ε)]≦α<α+ε ,
 ∀n≧N(ε) , |a[n]-α|<ε 。 
&br;
(Thm7) &color(red){下に有界な減少列は収束する。};
 {a[n]}を下に有界な減少列とすると
 α=inf{a[n]}が存在する。このとき、∀ε>0 ,
 ∃N(ε)∈N s.t. α-ε<α≦a[N(ε)]<α+ε , 
 ∀n≧N(ε) , |a[n]-α|<ε 。
&br;
(Thm8) &color(red){上に有界でない増加列は∞に発散する。};
 (Pf) {a[n]}を上に有界でない増加列とする。
 このとき、{a[n]}は上に有界ではないので
 ∀α∈R , ∃N(α)∈N s.t. a[n]>α 。
 また、{a[n]}は増加列であるからα=K>0として
 ∀K>0 , ∃N(K)∈N , ∀n≧N(K) , a[n]>K 。
&br;
(Thm9) &color(red){下に有界でない減少列は-∞に発散する。};
 (Pf) {a[n]}を下に有界でない減少列とする。
 このとき、{a[n]}は下に有界ではないので
 ∀α∈R , ∃N1(α)∈N s.t. a[n]<α 。
 また、{a[n]}は減少列であるからα=-K<0として
 ∀-K<0 , ∃N1(-K)∈N , ∀n≧N1(-K) , a[n]<-K 。
 ここで、N1(-K)=N(K)とおくと
 ∀K>0 , ∃N(K)∈N , ∀n≧N(K) , a[n]<-K 。
&br;
(Thm10) 数列{a[n]}に対して、
lim[n→∞](|a[n+1]|/|a[n]|)=cのとき
&color(red){[i] 0≦c<1 ⇒ lim[n→∞]a[n]=0};
&color(red){[ii] 1<c ⇒ lim[n→∞]|a[n]|=∞ 。};
 (Pf) [i] 仮定より、∀ε>0 , ∃N1(ε)∈N , 
 ∀n≧N1(ε) , |(|a[n+1]|/|a[n]|)-c|<ε 。
 このとき、|a[n+1]|/|a[n]|<c+ε 。
 c'=c+ε s.t. c<c'<1をとると∃N(c')∈N , 
 ∀n≧N(c') , |a[n+1]|/|a[n]|<c'
 |a[n+1]|<c'|a[n]|<|a[n]|より、n≧N(c')で
 {|a[n]|}は単調減少かつ|a[n]|≧0より、{a[n]}は収束。
 lim[n→∞]|a[n]|=αとすると0≦α 。
 |a[n+1]|<c’|a[n]|でn→∞とするとα≦c’α 。
 背理法によりα≦0 。よって、α=0 。
 [ii] b[n]=1/|a[n]|とおくと
 lim[n→∞](b[n+1]/b[n])
 =lim[n→∞](|a[n]|/|a[n+1]|)
 =1/c<1。また、[i]よりlim[n→∞]b[n]=0 。
 よって、lim[n→∞]|a[n]|=∞ 。
※lim[n→∞](1/|a[n]|)=0
⇔ ∀ε>0 , ∃N1(ε)∈N , ∀n≧N1(ε) , |1/|a[n]||<ε
⇔ ∀ε>0 , ∃N1(ε)∈N , ∀n≧N1(ε) , 1/|a[n]|<ε
⇔ ∀ε>0 , ∃N1(ε)∈N , ∀n≧N1(ε) , 1/ε<|a[n]|
⇔ ∀K>0 , ∃N(K)∈N , ∀n≧N(K) , |a[n]|>K
⇔ lim[n→∞]a[n]=∞
&br;
【例題9】 ∀a∈R , lim[n→∞]{(aⁿ)/(n!)}=0を示せ。
 (Pf) |{a^(n+1)}/{(n+1)!)}|/|(aⁿ)/(n!)|=|a|/n
 ∴|{a^(n+1)}/{(n+1)!)}|/|(aⁿ)/(n!)|→0
 よって、∀a∈R , lim[n→∞]{(aⁿ)/(n!)}=0 。
&br;
【例題10】 a[n]={1+(1/n)}ⁿは収束することを示せ。
 (Pf) nCk(1/n)^k={n(n-1)...(n-k+1)}/{k!(n^k)}
 ={1/(k!)}({n(n-1)...(n-k+1)}/(n・n・...・n))
 ={1/(k!)}Π[j=0→k-1]{1-(j/n)}(k≧1)より、
 ∀n≧2 , a[n]=Σ[k=0→n]{nCk(1/n)^k}
 =2+Σ[k=2→n]({1/(k!)}Π[j=1→k-1]{1-(j/n)}) 。
 ∀n≧2 , a[n+1]-a[n]
 =Σ[k=2→n+1]({1/(k!)}Π[j=1→k-1](1-{j/(n+1)}))-
 Σ[k=2→n]({1/(k!)}Π[j=1→k-1]{1-(j/n)}) 
 =Σ[k=2→n]{{1/(k!)}(Π[j=1→k-1](1-{j/(n+1)})-
 Π[j=1→k-1]{1-(j/n)})}+
 (1/{(n+1)!})Π[j=1→n](1-{j/(n+1)})
 =Σ[k=2→n]{{1/(k!)}(Π[j=1→k-1]b[j]-
 Π[j=1→k-1]c[j])}+(1/{(n+1)!})Π[j=1→n]b[j]
 (b[j]=1-{j/(n+1)} , c[j]=1-(j/n))
 1≦j≦n-1のとき、b[j]>c[j]>0なので
 {1/(k!)}Π[j=1→k-1]b[j]>{1/(k!)}Π[j=1→k-1]c[j]
 (2≦k≦n)。また、1≦j≦nのとき、b[j]>0なので
 Π[j=1→n]b[j]>0。よって、∀n≧2 , a[n+1]-a[n]>0。
 1≦j≦n-1のとき、0<c[j]<1なので
 {1/(k!)}Π[j=1→k-1]c[j]<1/(k!) (2≦k≦n) 。
 よって、∀n≧2 , a[n]=2+
 Σ[k=2→n]{1/(k!)}Π[j=1→k-1]c[j]
 <2+Σ[k=2→n]{1/(k!)}<2+Σ[k=2→n](1/{2^(k-1)})
 =2+({(1/2){1-(1/2)^(n-1)}}/{1-(1/2)})
 =3-(1/2)^(n-1)<3 。
 a[1]=2<3より、∀n∈N , a[n]<3 。
 これより、{a[n]}は上に有界な増加列なので収束する。
&br;
&color(red){{a[n(k)]} (∀k,n(k)∈N , n(k)<n(k+1))};
で表される数列を{a[n]}の&color(red){部分列};という。
&br;
(Thm11) lim[n→∞]a[n]=α ⇒ {a[n]}の任意の部分列
{a[n(k)]}について、lim[k→∞]a[n(k)]=α 。
 (Pf) 仮定より、∀ε>0 , ∃N(ε)∈N , ∀n≧N(ε) , 
 |a[n]-α|<ε 。{a[n]}の任意の部分列{a[n(k)]}をとると
 lim[k→∞]n(k)=∞より、∃k(ε)∈N , ∀k≧k(ε) ,
 n(k)≧N(ε) 。このとき、|a[n(k)]-α|<ε 。
 ∴∀ε>0 , ∃k(ε)∈N , ∀k≧k(ε) , |a[n(k)]-α|<ε
&br;
(Thm12) lim[n→∞]a[n]=∞ ⇒ {a[n]}の任意の部分列
{a[n(k)]}について、lim[k→∞]a[n(k)]=∞ 。
 (Pf) 仮定より、∀K>0 , ∃N(K)∈N , ∀n≧N(K) , 
 a[n]>K 。{a[n]}の任意の部分列{a[n(k)]}をとると
 lim[k→∞]n(k)=∞より、∃k(K)∈N , ∀k≧k(K) ,
 n(k)≧N(K) 。このとき、a[n(k)]>K 。
 ∴∀K>0 , ∃k(K)∈N , ∀k≧k(K) , a[n(k)]>K
&br;
(Thm13) lim[n→∞]a[n]=-∞ ⇒ {a[n]}の任意の部分列
{a[n(k)]}について、lim[k→∞]a[n(k)]=-∞ 。
 (Pf) 仮定より、∀K>0 , ∃N(K)∈N , ∀n≧N(K) , 
 a[n]<-K 。{a[n]}の任意の部分列{a[n(k)]}をとると
 lim[k→∞]n(k)=∞より、∃k(K)∈N , ∀k≧k(K) ,
 n(k)≧N(K) 。このとき、a[n(k)]<-K 。
 ∴∀K>0 , ∃k(K)∈N , ∀k≧k(K) , a[n(k)]<-K
&br;
ボルツァノ・ワイエルストラスの定理:
&color(red){有界な数列は収束部分列を含む。};
 (Pf) {a[n]}を有界とし、p[1]≦a[n]≦q[1]とする。
 I[1]=[P[1],q[1]]を中点で分け、{a[n]}の項を無限個
 含む方をI[2]=[p[2],q[2]]とする。(両方とも含む場合は
 どちらでも可) この操作を繰り返してI[n]=[p[n],q[n]]を
 作るとI[1]⊃I[2]⊃・・・より、p[1]≦p[2]≦・・・
 ≦p[n]≦・・・≦q[n]≦・・・≦q[2]≦q[1] 。
 p[n]は上に有界な増加列、q[n]は下に有界な減少列なので
 ともに収束する。lim[n→∞]p[n]=α , lim[n→∞]q[n]=β
 とおくと、q[n]-p[n]=(q[1]-p[1])/{2^(n-1)}より
 lim[n→∞](q[n]-p[n])=0 。∴α=β
 ∀k∈N , I(k)は無限個の項を含むから∀k∈N , 
 ∃a[n(k)]∈I(k) s.t. n(1)<n(2)<・・・ 。
 このとき、p[k]≦a[n(k)]≦q[k]なので
 はさみうちの原理より、lin[k→∞]a[n(k)]=α 。
&br;
&color(red){数列{a[n]}がコーシー列};
&color(red){⇔ ∀ε>0 , ∃N(ε)∈N , ∀m,n≧N(ε) , |a[m]-a[n]|<ε};
&br;
コーシーの判定条件:
&color(red){{a[n]}が収束する ⇔ {a[n]}がコーシー列};
 (Pf) {a[n]}が収束する
 ⇒ ∀ε>0 , ∃N(ε)∈N , 
 ∀n≧N(ε) , |a[n]-α|<ε
 ⇒ ∀ε>0 , ∃N(ε)∈N , ∀m,n≧N(ε) , 
 |a[m]-a[n]|≦|a[m]-α|+|α-a[n]|<2ε
 {a[n]}がコーシー列
 ⇒ ∀ε>0 , ∃N(ε)∈N , 
 ∀m,n≧N(ε) , |a[m]-a[n]|<ε
 ⇒ ∃N(1)∈N , ∀n≧N(1) , |a[N(1)]-a[n]|<1
 ⇒ ∀n∈N , |a[n]|≦max{|a[1],a[2],・・・,
 |a[N(1)-1]|,1+|a[n]|}
 ⇒ ∃{a[n(k)]} s.t. lim[k→∞]a[n(k)]=α
 ⇒ (∀ε>0 , ∃k1(ε)∈N , ∀k≧k1(ε) , 
 |a[n(k)-α|<ε)∧(∃k2(ε)∈N ,
 ∀k≧k2(ε) , n(k)≧N(ε))
 ⇒ k(ε)=max{k1(ε),k2(ε)とおくと、
 ∀ε>0 , ∃N(ε)∈N , ∀n≧N(ε) , |a[n]-α|
 ≦|a[n]-a[n(k(ε))]|+|a[n(k(ε))]-α|<2ε 。
&br;
Σ[n=1→∞]a[n]=a[1]+a[2]+・・・を&color(red){(無限)級数};といい、
S[n]=Σ[k=1→n]a[k]を&color(red){第n部分和};という。
また、{S[n]}はΣ[n=1→∞]a[n]の部分和列と呼ばれる。
無限級数の収束、発散は次のように定義される。
&color(red){(1) Σ[n=1→∞]a[n]が収束する ⇔ {S[n]}が収束する};
&color(red){(2) Σ[n=1→∞]a[n]が発散する ⇔ {S[n]}が発散する};
&color(red){(3) Σ[n=1→∞]a[n]=±∞ ⇔ lim[n→∞]{S[n]}=±∞};
&br;
【例題10】 &color(red){Σ[n=1→∞]{ar^(n-1)}};
&color(red){=a/(1-r) (|r|<1) , ±∞ (a≠0 , r=1)};を示せ。
 (Pf) r=0のときは考えなくて良い。(0^0は定義不可能)
 [i] a≠0,r≠1のとき
 Σ[k=1→n]{ar^(k-1)}={a(r^n-1)}/(r-1)より
 lim[n→∞](r^n)について考える。
 (1) 0<|r|<1のとき
 (Thm10)より、0<|r|<1 ⇒ lim[n→∞](r^n)=0 。
 ∴lim[n→∞]Σ[k=1→n]{ar^(k-1)}=a/(1-r)
 (2) r>1のとき
 (Thm10)より、r>1 ⇒ lim[n→∞](r^n)=∞ 。
 ∴lim[n→∞]Σ[k=1→n]{ar^(k-1)}=∞
 (3) r<-1のとき
 a[n]=r^nはnの値が1増えるごとに符号が反転するため
 {a[n]}は∞,-∞のいずれにも発散せず、
 lim[n→∞](r^n)=α∈Rと仮定すると
 ∀ε>0 , ∃N(ε)∈N , ∀n≧N(ε) , |r^n-α|<ε 。
 このとき、α-ε<|r^n|<α+εとなるが
 (Thm10)より、lim[n→∞]|r^n|=∞なので矛盾。
 よって、r<-1のとき{a[n]}は振動し、
 b[n]=Σ[n=1→∞]{ar^(n-1)}とおくと
 {b[n]}も同様に振動する。
 (4) r=-1のとき
 a[n]=r^nはnの値が1増えるごとに符号が反転するため
 {a[n]}は∞,-∞のいずれにも発散せず、
 lim[n→∞](r^n)=α∈Rと仮定すると
 ∀ε>0 , ∃N(ε)∈N , ∀n≧N(ε) , |(-1)^n-α|<ε 。
 r=1をとると∃N(1)∈N , ∀n≧N(1) , |(-1)^n-α|<1 。
 このとき、-1<(-1)^n-α<1 。 ∴-1+(-1)^n<α<1+(-1)^n
 ここで、nが偶数のとき(-1)^n=1より、0<α<2となり
 nが奇数のとき(-1)^n=-1より、-2<α<0となるが
 極限の一意性に反するので{a[n]}は収束しない。
 a[n]=-1(nは奇数),1(nは偶数)より、{a[n]}は
 ∞,-∞のいずれにも発散しないので{a[n]}は振動する。
 b[n]=Σ[n=1→∞]{ar^(n-1)}とおくと
 {b[n]}も同様に振動する。
 [ii] a≠0,r=1のとき
 (1) a>0のとき
 Σ[n=1→∞]{ar^(n-1)}=lim[n→∞](na)=∞ 。
 (2) a<0のとき
 Σ[n=1→∞]{ar^(n-1)}=lim[n→∞](na)=-∞ 。
 [iii] a=0のとき
 (1) r≠1のとき
 Σ[n=1→∞]{ar^(n-1)}=0=a/(1-r) 。
 (2) r=1のとき
 Σ[n=1→∞]{ar^(n-1)}=0 。
 [i]~[iii]より、Σ[n=1→∞]{ar^(n-1)}
 =a/(1-r) (|r|<1) , ±∞ (a≠0 , r=1) 。
&br;
コーシーの判定条件(級数):
&color(red){Σ[n=1→∞]a[n]が収束する};
&color(red){⇔ ∀ε>0 , ∃N(ε)∈N , ∀m>n>N(ε) ,};
&color(red){|a[n+1]+・・・+a[m]|<ε};
 (Pf) S[n]=Σ[k=1→n]a[k]とおく。
 Σ[n=1→∞]a[n]が収束する
 ⇔ {S[n]}が収束する
 ⇔ {S[n]}がコーシー列
 ⇔ ∀ε>0 , ∃N(ε)∈N ,
 ∀m,n≧N(ε) , |S[m]-S[n]|<ε
 ⇔ ∀ε>0 , ∃N(ε)∈N ,
 ∀m>n≧N(ε) , |S[m]-S[n]|<ε
 (∵ m=n≧N(ε) ⇒ |S[m]-S[n]|=0<ε ,
 n>m≧N(ε) ⇒ |S[m]-S[n]|=|S[n]-S[m]|<ε)
 ⇔ ∀ε>0 , ∃N(ε)∈N ,
 ∀m>n≧N(ε) , |a[n+1]+・・・+a[m]|<ε
&br;
系1:&color(red){Σ[n=1→∞]a[n]が収束する ⇒ lim[n→∞]a[n]=0};
 (Pf) Σ[n=1→∞]a[n]=S ,
 S[n]=Σ[k=1→n]a[k]とおく。
 Σ[n=1→∞]a[n]が収束する
 ⇒ Σ[n=1→∞]a[n+1]
 =lim[n→∞](S[n+1]-S[n])=S-S=0
 ⇒ Σ[n=1→∞]a[n]=0
&br;
&color(red){Σ[n=1→∞]a[n]は正項級数 ⇔ ∀n∈N , a[n]≧0};
&br;
系2:正項級数Σ[n=1→∞]a[n]において
部分和列{S[n]}が上に有界ならば{S[n]}は収束し、
上に有界でないならば{S[n]}は∞に発散する。
 (Pf) ∀n∈N , S[n+1]≧S[n]より、S[n]は増加列。
 よって、(Thm6),(Thm8)より、{S[n]}が
 上に有界ならば{S[n]}は収束し、{S[n]}が
 上に有界でないならば{S[n]}は∞に発散する。
&br;
系3:正項級数Σ[n=1→∞]a[n]において部分和列
{S[n]}が収束しないならば{S[n]}は∞に発散する。
 (Pf) 系2の対偶を考えれば良い。
 {S[n]}が収束しない
 ⇒ {S[n]}は上に有界ではない
 ⇒ {S[n]}は∞に発散する
&br;
【例題11】 Σ[n=1→∞](1/n)=∞を示せ。
 (Pf) S[n]=Σ[k=1→n]a[n]とおくと
 ∀n∈N , |S[2n]-S[n]|=S[2n]-S[n]
 ={1/(n+1)}+・・・+{1/(2n)}>{1/(2n)}・n=1/2より
 {S[n]}は収束しないので、lim[n→∞]S[n]=∞ 。
 よって、Σ[n=1→∞](1/n)=∞ 。
&br;
級数の性質:
Σ[n=1→∞]a[n],Σ[n=1→∞]b[n]が収束するならば
Σ[n=1→∞](a[n]±b[n]) , Σ[n=1→∞](ca[n])も収束し、
&color(red){(1) Σ[n=1→∞](a[n]±b[n])};
&color(red){=Σ[n=1→∞]a[n]±Σ[n=1→∞]b[n]};
&color(red){(2) Σ[n=1→∞](ca[n])=cΣ[n=1→∞]a[n]};
が成り立つ。また、S[n]=Σ[k=1→n]a[k]
で表される数列{S[n]}において、{a[n]}の
有限個の項を変えたり、取り除いたり、{a[n]}に
有限個の項を加えたりしても新たな数列における
収束、発散の状態は不変。(極限値は一般に不一致)
 (Pf) (1),(2)は数列の極限の性質より明らか。
 次に{a[n]}から有限個の項を取り除く場合を考える。
 <1> {a[n]}から有限個の項を取り除くとき
 取り除いて得られる新たな数列を{b[n]}とおき、
 取り除いた項の最大の番号をn未満、取り除いた項の
 和をAとすると、Σ[k=1→n]b[k]=S[n]-A 。
 <2> {a[n]}に有限個の項を加えるとき
 {a[n]}の第n項より前にM個の項を加えて
 得られる数列を{b[n]}とおき、加えた項の
 和をAとすると、Σ[k=1→n+M]b[k]=S[n]+A 。
 よって、Σ[n=1→∞]b[n]の収束、発散の状態は
 <1>,<2>のいずれであっても{S[n]}と変わらない。
&br;
α∈/Rとする。
&color(red){αは{a[n]}の集積値};
&color(red){⇔ ∃{a[n(k)]} , lim[n→∞]a[n(k)]=α};
&br;
(Thm14) α∈Rは{a[n]}の集積値 
⇔ 任意のε>0に対して、|a[n]-α|<ε
を満たすn∈Nが無数に存在する。
 (Pf) αは{a[n]}の集積値
 ⇔ ∃{a[n(k)]} , lim[k→∞]a[n(k)]=α
 ⇔ ∀ε>0 , ∃k(ε)∈N , ∀k≧k(ε) , |a[n(k)]-α|<ε
 ⇔ ∀ε>0 , ∃n∈N (n=n(k(ε)) ,
 n(k(ε)+1) , ・・・) s.t. |a[n]-α|<ε
&br;
(Thm15) E⊂/R , E≠Фとする。
∃{a[n]}(a[n]∈E ⇒ lim[n→∞]a[n]=supE)
 (Pf) -∞<supE<∞のとき、α=supEとおくと
 ∃a[n]∈E s.t. α-(1/n)<a[n]≦α 。
 はさみのうちの原理より、lim[n→∞]a[n]=α 。
 supE=∞のとき、Eは上に有界ではないから
 ∃a[n]∈E s.t. a[n]>n 。
 (Thm3)より、lim[n→∞]a[n]=∞ 。
 supE=-∞のとき、E={-∞}より、lim[n→∞]a[n]=-∞ 。
&br;
(Thm16) E⊂/R , E≠Фとする。
∃{a[n]}(a[n]∈E ⇒ lim[n→∞]a[n]=infE)
 (Pf) -∞<infE<∞のとき、α=infEとおくと
 ∃a[n]∈E s.t. α≦a[n]<α+(1/n) 。
 はさみのうちの原理より、lim[n→∞]a[n]=α 。
 infE=∞のとき、E={∞}より、lim[n→∞]a[n]=∞ 。
 infE=-∞のとき、Eは下に有界ではないから
 ∃a[n]∈E s.t. a[n]<-n 。
 (Thm4)より、lim[n→∞]a[n]=-∞ 。
&br;
(Thm17) {a[n]}の集積値の集合をA∈Rとする。
(α[m]∈A)∧(lim[m→∞]α[m]=α) ⇒ α∈A
 (Pf) α[m]∈Aより、(Thm14)から
 ∀ε>0 , ∃n∈N (n=n(k(ε)) ,
 n(k(ε)+1) , ・・・) s.t. |a[n]-α[m]|<ε 。
 lim[m→∞]α[m]=αより、∀ε>0 , 
 ∃N(ε)∈N , ∀m≧N(ε) , |α[m]-α|<ε 。
 これより、∀ε>0 , ∃n∈N (n=n(k(ε)) ,
 n(k(ε)+1) , ・・・) , ∃N(ε)∈N , ∀m≧N(ε) ,
 |a[n]-α|≦|a[n]-α[m]|+|α[m]-α|<2ε 。
 ∴∀ε>0 , ∃n∈N (n=n(k(ε)) ,
 n(k(ε)+1) , ・・・) , |a[n]-α|
 ≦|a[n]-α[N(ε)]|+|α[N(ε)]-α|<2ε 。
 よって、(Thm14)より、α∈A 。
&br;
系4:{a[n]}は有界 ⇒ {a[n]}の集積値の
集合E∈Rは最大値、最小値をもつ。
 (Pf) 最大値の存在:
 ボルツァーノ・ワイエルストラスの定理より
 有界な数列は収束部分列を含むから
 部分列を{a[n(k)}とおくと、∃α[m]∈R , ∀ε>0 ,
 ∃k(ε)∈N , ∀k≧k(ε) , |a[n(k)]-α[m]|<ε 。
 {a[n]}は有界なので、∃A≦B , ∀n∈N ,
 A≦a[n]≦Bが成り立つ。ここで、α[m]≧C>Bと
 おくとε=C-Bで不適となり、α[m]≦D<Aとおいても
 ε=A-Dで不適となるので、A≦α[m]≦B 。
 これより、{a[n]}が有界ならばE∈Rも有界で
 Eは上限をもつ。α[m]∈Eなので、(Thm16)より
 ∃{α[m]} , lim[m→∞]α[m]=supE 。
 (Thm15)より、supE∈Eとなり、Eは最大値をもつ。
 最小値の存在:
 {a[n]}が有界ならばE∈Rも有界でEは下限をもつ。
 α[m]∈Eなので、(Thm17)より、∃{α[m]} ,
 lim[m→∞]α[m]=infE 。(Thm15)より
 infE∈Eとなり、Eは最小値をもつ。
&br;
{a[n]}の集積値のうち、最大のものと最小のものを
求めたい。数列の極限の性質(v)より、{a[n]}の
最初の有限個の項を取り除いても集積値には影響を
与えないので、a[n]以降の項だけで考えて良い。
b[n]=sup{a[k]|k≧n}∈/R ,
c[n]=inf{a[k]|k≧n}∈/R
とおくと、∀k≧n , c[n]≦a[k]≦b[n] 。
A⊂B ⇒ infB≦infA≦supA≦supB なので
{b[n]}は単調減少で{c[n]}は単調増加。
(Thm6)~(Thm9)より次のことが言える。
#br
lim[n→∞]b[n]=+∞ (∀n∈N , b[n]=+∞)
lim[n→∞]b[n]=α ({b[n]}は下に有界)
lim[n→∞]b[n]=-∞ ({b[n]}は下に有界ではない)
#br
lim[n→∞]c[n]=+∞ ({c[n]}は上に有界ではない)
lim[n→∞]c[n]=α ({c[n]}は上に有界)
lim[n→∞]c[n]=-∞ (∀n∈N , b[n]=-∞)
#br
これらの極限は±∞の場合も含め、存在するとみなす。
#br
&color(red){limsup[n→∞]a[n]=lim[n→∞]sup{a[k]|k≧n}};
&color(red){を{a[n]}の上極限といい、(/lim)[n→∞]a[n]とも表す。};
&color(red){liminf[n→∞]a[n]=lim[n→∞]inf{a[k]|k≧n}};
&color(red){を{a[n]}の上極限といい、(lim/)[n→∞]a[n]とも表す。};
&br;
(Thm15) limsup[n→∞]a[n]は
{a[n]}の&color(red){最大の集積値};であり、
liminf[n→∞]a[n]は
{a[n]}の&color(red){最小の集積値};である。
 (Pf) b[n]=sup{a[k]|k≧n} , 
 c[n]=inf{a[k]|k≧n}とおく。
 (1) limsup[n→∞]a[n]が{a[n]}の
 最大の集積値になることを示す。
 [1] limsup[n→∞]a[n]=lim[n→∞]b[n]=βとおく。
 β=∞のとき、βは最大の集積値である。
 β=-∞のとき、∀n∈N , a[n]≦b[n]により


ホーム リロード   新規 下位ページ作成 コピー 編集 添付 一覧 最終更新 差分 バックアップ 検索   凍結 名前変更     最終更新のRSS